NodeQ MindMap includes a powerful CLI for headless operations, server-side rendering, and automated pipeline management.
npm install -g nodeq-mindmap
# Create mind map from JSON file
nodeq-mindmap generate \
--input data.json \
--output mindmap.svg \
--width 1200 \
--height 800
# Create with custom theme
nodeq-mindmap generate \
--input data.json \
--output mindmap.svg \
--theme dark \
--width 1200 \
--height 800
# Create pipeline from samples
nodeq-mindmap pipeline create \
--input sample-input.json \
--output sample-output.json \
--name "User Data Pipeline"
# Execute pipeline
nodeq-mindmap pipeline execute \
--name "User Data Pipeline" \
--input new-data.json \
--output transformed-data.json
# List all pipelines
nodeq-mindmap pipeline list
# Get pipeline statistics
nodeq-mindmap pipeline stats --name "User Data Pipeline"
nodeq-mindmap pipeline create \
--input sample-input.json \
--output sample-output.json \
--name "TF Pipeline" \
--model-type tensorflow \
--model-path ./models/custom-model.json
nodeq-mindmap pipeline create \
--input sample-input.json \
--output sample-output.json \
--name "GPT Pipeline" \
--model-type openai \
--model-name gpt-4 \
--api-key $OPENAI_API_KEY
nodeq-mindmap pipeline create \
--input sample-input.json \
--output sample-output.json \
--name "HF Pipeline" \
--model-type huggingface \
--model-name sentence-transformers/all-MiniLM-L6-v2
nodeq-mindmap pipeline create \
--input kafka-sample.json \
--output processed-sample.json \
--name "Kafka Pipeline" \
--data-source kafka \
--kafka-host localhost:9092 \
--kafka-topic user-events
nodeq-mindmap pipeline create \
--input iot-sample.json \
--output analytics-sample.json \
--name "IoT Pipeline" \
--data-source iot-hub \
--iot-endpoint your-hub.azure-devices.net \
--iot-token $IOT_HUB_TOKEN
nodeq-mindmap pipeline create \
--input api-sample.json \
--output enriched-sample.json \
--name "API Pipeline" \
--data-source rest-api \
--api-endpoint https://api.example.com/data \
--api-token $API_TOKEN \
--polling-interval 30000
# Create pipeline with ETL options
nodeq-mindmap pipeline create \
--input raw-data.json \
--output clean-data.json \
--name "ETL Pipeline" \
--etl-error-handling log \
--etl-parallel-processing true \
--etl-checkpoint-interval 1000 \
--etl-batch-size 500
# Start real-time processing
nodeq-mindmap pipeline start-realtime \
--name "ETL Pipeline" \
--monitoring true
# Export pipeline code
nodeq-mindmap pipeline export-code \
--name "ETL Pipeline" \
--output pipeline-function.js
# Get detailed statistics
nodeq-mindmap pipeline stats \
--name "Production Pipeline" \
--format table
# Export metrics
nodeq-mindmap pipeline export-metrics \
--name "Production Pipeline" \
--output metrics.json \
--time-range 24h
# Generate performance report
nodeq-mindmap pipeline report \
--name "Production Pipeline" \
--format pdf \
--output pipeline-report.pdf
# Generate with custom styling
nodeq-mindmap generate \
--input data.json \
--output mindmap.svg \
--node-color "#4299e1" \
--text-color "#2d3748" \
--background-color "#ffffff" \
--font-size 14 \
--width 1200 \
--height 800
# Batch processing
nodeq-mindmap batch \
--input-dir ./data \
--output-dir ./outputs \
--format svg \
--theme ocean
Create a nodeq.config.json
file:
{
"defaultTheme": "dark",
"outputFormat": "svg",
"defaultSize": {
"width": 1200,
"height": 800
},
"pipelineDefaults": {
"modelType": "tensorflow",
"errorHandling": "log",
"parallelProcessing": true
}
}
Use with:
nodeq-mindmap --config nodeq.config.json generate --input data.json