NodeQ MindMap supports multiple AI/ML backends for intelligent data pipeline generation.
The default model uses TensorFlow.js for client-side ML processing.
// Automatic - no configuration needed
const pipeline = await mindMap.createDataPipeline(
'Auto Pipeline',
inputSample,
outputSample
);
Advantages:
Leverage GPT-3.5 or GPT-4 for advanced transformation logic.
const openaiConfig = {
type: 'openai',
modelName: 'gpt-4',
apiKey: process.env.OPENAI_API_KEY,
parameters: {
temperature: 0.2,
maxTokens: 1000,
systemPrompt: 'You are a data transformation expert.'
}
};
const pipeline = await mindMap.createDataPipeline(
'GPT-Powered Pipeline',
inputSample,
outputSample,
{ modelConfig: openaiConfig }
);
Access thousands of pre-trained models via Hugging Face API.
const hfConfig = {
type: 'huggingface',
modelName: 'sentence-transformers/all-MiniLM-L6-v2',
endpoint: 'https://api-inference.huggingface.co/models/',
apiKey: process.env.HF_API_TOKEN,
parameters: {
options: {
wait_for_model: true
}
}
};
Integrate your own ML services.
const customConfig = {
type: 'custom',
endpoint: 'https://your-ml-api.com/transform',
apiKey: process.env.CUSTOM_API_KEY,
headers: {
'Content-Type': 'application/json',
'X-Custom-Header': 'value'
},
parameters: {
analysisType: 'pipeline-generation',
confidence: 0.9
}
};
Use your own trained TensorFlow models.
const localModelConfig = {
type: 'tensorflow',
localPath: './models/custom-pipeline-model/model.json',
parameters: {
threshold: 0.8,
batchSize: 32
}
};
Use Case | Recommended Model | Why |
---|---|---|
Simple Transformations | Built-in TensorFlow | Fast, offline, no API costs |
Complex Logic | OpenAI GPT-4 | Advanced reasoning capabilities |
Semantic Analysis | Hugging Face Transformers | Specialized NLP models |
Custom Requirements | Custom API | Full control over processing |
Privacy-Critical | Local TensorFlow | Data never leaves your system |
// Benchmark different models
const benchmarkResults = await mindMap.benchmarkModels([
'tensorflow',
'openai-gpt-3.5',
'huggingface-bert'
], testData);
console.log(benchmarkResults);
// {
// tensorflow: { latency: '45ms', accuracy: '92%', cost: '$0' },
// openai: { latency: '1200ms', accuracy: '98%', cost: '$0.002' },
// huggingface: { latency: '800ms', accuracy: '94%', cost: '$0.0001' }
// }
// Environment variables (recommended)
const config = {
type: 'openai',
apiKey: process.env.OPENAI_API_KEY
};
// Or pass directly (not recommended for production)
const config = {
type: 'openai',
apiKey: 'sk-...'
};
const privacyConfig = {
dataRetention: false, // Don't store data on API provider
anonymization: true, // Remove PII before sending
localProcessingOnly: true // Force local processing
};
// Switch models at runtime
mindMap.switchModel('openai', openaiConfig);
mindMap.switchModel('tensorflow'); // Back to default
// Use different models for different pipelines
await mindMap.createDataPipeline('Fast Pipeline', input, output, {
modelConfig: { type: 'tensorflow' }
});
await mindMap.createDataPipeline('Smart Pipeline', input, output, {
modelConfig: { type: 'openai' }
});